Since the establishment of 10 Gigabit Ethernet, it has been employed by large amount of enterprises in their corporate backbones, data centers, and server farms to support high-bandwidth applications. But how to achieve a reliable, stable and cost-effective 10Gbps network? There are ten things you should know before doing the deployment.
More Efficient for the Server Edge
Many organizations try to optimize their data centers by seeking server virtualization which supports several applications and operating systems on a single server by defining multiple virtual machines on the server. Because of this, the organizations can reduce server inventory, better utilize servers, and mange resources more efficiently. Server virtualization relies heavily on networking and storage. Virtual machines require lot of storage. The network connectivity between servers and storage must be fast enough to avoid bottlenecks. And 10GbE can provide the fast connectivity for virtualized environments.
More Cost-effective for SAN
There are three types of storage in a network: direct-attached storage, network attached storage, and SAN. Among them, SAN is the most flexible and scalable solution for data center and high-density applications. But it costs much and needs special trainees for installing and maintaining the Fibre Channel interconnect fabric.
The internet small computer system interface (iSCSI) makes 10 Gigabit Ethernet an attractive interconnect fabric for SAN applications. iSCSI allows 10 Gigabit Ethernet infrastructure to be used as a SAN fabric which is more favorable compared with Fibre Channel. Because it can reduce equipment and management costs, enhance server management, improve disaster recovery and deliver excellent performance.
Reducing Bottlenecks for the Aggregation Layer
Today, traffic at the edge of the network has increased dramatically. Gigabit Ethernet to the desktop has become more popular since it becomes less expensive. More people adopt Gigabit Ethernet to the desktop, which increases the oversubscription ratios of the rest of the network. And that brings the bottleneck between large amounts of Gigabit traffic at the edge of the network and the aggregation layer or core.
10 Gigabit Ethernet allows the aggregation layer to scale to meet the increasing demands of users and applications. It can well solve the bottleneck for its three advantages. First, 10 Gigabit Ethernet link uses fewer fiber stands compared with Gigabit Ethernet aggregation. Second, 10 Gigabit Ethernet can support multi Gigabit streams. Third, 10 Gigabit Ethernet provides greater scalability, bringing a future-proof network.
Fiber Cabling Choices
To realize 10 Gigabit Ethernet network deployment, three important factors should be considered, including the type of fiber cable (MMF of MF), the type of 10 Gigabit Ethernet physical interface and optics module (XENPAK, X2, XFP and SFP+).
Cable Types | Interface | Max Distance |
MMF (OM1/OM2/OM3) | 10GBASE-SR | 300 m |
10GBASE-LRM | 220 m | |
10GBASE-ER | 40 km | |
SMF (9/125um fiber) | 10GBASE-LR | 10 km |
10GBASE-ZR | 80 km |
Form factor options are interoperable when 10 Gigabit Ethernet physical interface type is the same on both ends of the fiber link. For example, 10GBASE-SR XFP on the left can be linked with one 10GBASE-SR SFP+ on the right. But 10GBASE-SR SFP+ can’t connect to one 10GBASE-LRM SFP+ at the other end of the link.
Copper Cabling Solutions
As copper cabling standards becomes mature, the copper cabling solutions for 10GbE is becoming common. Copper cabling is suitable for short distance connection. The are three different copper cabling solutions for 10 Gigabit Ethernet: 10GBASE-CX4, SFP+ DAC (direct attach cable) and 10GBASE-T.
10GBASE-CX4 is the first 10 Gigabit Ethernet standard. It’s economical and allowed for very low latency. But it’s a too large form factor for high density port counts in aggregation switches.
10G SFP+ DAC is a new copper solution for 10 Gigabit Ethernet. It has become the main choice for servers and storage devices in a rack because of its low latency, small connector and reasonable cost. It’s the best choice for short 10 Gigabit Ethernet network connection.
10GBASE-T runs 10G Ethernet over Cat6a and Cat7 up to 100 m. But this standard is not very popular since it needs technology improvements to reduce its cost, power consumption, and latency.
For Top of Rack Applications
A top-of-rack (ToR) switch is a switch with a low number of ports that sits at the very top or in the middle of a 19’’ telco rack in data centers. A ToR switch provides a simple, low-cost way to easily add more capacity to a network. It connects several servers and other network components such as storage together in a single rack.
ToR switch uses SFP+ to provide 10G network in an efficient 1U form factor. DAC makes rack cabling and termination easier. Each server and network storage device can be directly connected to the ToR switch, eliminating the need for intermediate patch panels. DAC is flexible for vertical cabling management within the rack architecture. And the cabling outside the rack, the ToR switch uplink connection to the aggregation layer, simplifies moving racks.
The following figure shows a 10 Gigabit Ethernet ToR switching solution for servers and network storage. Because the servers are virtualized, so the active-active server team can be distributed across two stacked witches. This can ensure physical redundancy for the servers while connected to the same logical switch. What’s more, failover protection can be offered if one physical link goes down.
Conclusion
10 Gigabit Ethernet network is not the fastest but quite enough for common use in our daily life. So you should better read this article before you do the deployment. Besides, FS.COM provides both fiber and copper cabling solutions for 10G network. For more details, please visit www.fs.com.
Originally published at www.fiber-optic-equipment.com
No comments:
Post a Comment